Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Article in English | MEDLINE | ID: mdl-38445511

ABSTRACT

AIMS: Variation in diagnostic performance of SPECT myocardial perfusion imaging (MPI) has been observed, yet the impact of cardiac size has not been well characterized. We assessed whether low left ventricular volume influences SPECT MPI's ability to detect obstructive coronary artery disease (CAD), and its interaction with age and sex. METHODS AND RESULTS: A total of 2,066 patients without known CAD (67% male, 64.7 ± 11.2 years) across 9 institutions underwent SPECT MPI with solid-state scanners followed by coronary angiography as part of the REgistry of Fast Myocardial Perfusion Imaging with NExt Generation SPECT. Area under receiver-operating characteristic curve (AUC) analyses evaluated performance of quantitative and visual assessments according to cardiac size (end- diastolic volume [EDV]; < 20th vs. ≥ 20th population or sex-specific percentiles), age (<75 vs. ≥ 75 years), and sex. Significantly decreased performance was observed in patients with low EDV compared to those without (AUC: population 0.72 vs. 0.78, p = 0.03; sex-specific 0.72 vs. 0.79, p = 0.01) and elderly patients compared to younger patients (AUC 0.72 vs. 0.78, p = 0.03), whereas males and females demonstrated similar AUC (0.77 vs. 0.76, p = 0.67). The reduction in accuracy attributed to lower volumes was primarily observed in males (sex-specific threshold: EDV 0.69 vs. 0.79, p = 0.01). Accordingly, a significant decrease in AUC, sensitivity, specificity, and negative predictive value for quantitative and visual assessments was noted in patients with at least two characteristics of low EDV, elderly age, or male sex. CONCLUSIONS: Detection of CAD with SPECT MPI is negatively impacted by small cardiac size, most notably in elderly and male patients.

2.
EBioMedicine ; 99: 104930, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168587

ABSTRACT

BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction. METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction. FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36). INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results. FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Coronary Artery Disease/diagnostic imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/etiology , Perfusion , Prognosis , Risk Factors , Unsupervised Machine Learning , Retrospective Studies
3.
NPJ Digit Med ; 6(1): 78, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37127660

ABSTRACT

Standard clinical interpretation of myocardial perfusion imaging (MPI) has proven prognostic value for predicting major adverse cardiovascular events (MACE). However, personalizing predictions to a specific event type and time interval is more challenging. We demonstrate an explainable deep learning model that predicts the time-specific risk separately for all-cause death, acute coronary syndrome (ACS), and revascularization directly from MPI and 15 clinical features. We train and test the model internally using 10-fold hold-out cross-validation (n = 20,418) and externally validate it in three separate sites (n = 13,988) with MACE follow-ups for a median of 3.1 years (interquartile range [IQR]: 1.6, 3.6). We evaluate the model using the cumulative dynamic area under receiver operating curve (cAUC). The best model performance in the external cohort is observed for short-term prediction - in the first six months after the scan, mean cAUC for ACS and all-cause death reaches 0.76 (95% confidence interval [CI]: 0.75, 0.77) and 0.78 (95% CI: 0.78, 0.79), respectively. The model outperforms conventional perfusion abnormality measures at all time points for the prediction of death in both internal and external validations, with improvement increasing gradually over time. Individualized patient explanations are visualized using waterfall plots, which highlight the contribution degree and direction for each feature. This approach allows the derivation of individual event probability as a function of time as well as patient- and event-specific risk explanations that may help draw attention to modifiable risk factors. Such a method could help present post-scan risk assessments to the patient and foster shared decision-making.

4.
Eur J Nucl Med Mol Imaging ; 50(9): 2656-2668, 2023 07.
Article in English | MEDLINE | ID: mdl-37067586

ABSTRACT

PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS: Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS: Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Male , Female , Humans , Coronary Artery Disease/diagnostic imaging , Myocardial Perfusion Imaging/methods , Unsupervised Machine Learning , Tomography, Emission-Computed, Single-Photon/methods , Exercise Test/methods , Prognosis
5.
JACC Cardiovasc Imaging ; 16(2): 209-220, 2023 02.
Article in English | MEDLINE | ID: mdl-36274041

ABSTRACT

BACKGROUND: Myocardial perfusion imaging (MPI) is frequently used to provide risk stratification, but methods to improve the accuracy of these predictions are needed. OBJECTIVES: The authors developed an explainable deep learning (DL) model (HARD MACE [major adverse cardiac events]-DL) for the prediction of death or nonfatal myocardial infarction (MI) and validated its performance in large internal and external testing groups. METHODS: Patients undergoing single-photon emission computed tomography MPI were included, with 20,401 patients in the training and internal testing group (5 sites) and 9,019 in the external testing group (2 different sites). HARD MACE-DL uses myocardial perfusion, motion, thickening, and phase polar maps combined with age, sex, and cardiac volumes. The primary outcome was all-cause mortality or nonfatal MI. Prognostic accuracy was evaluated using area under the receiver-operating characteristic curve (AUC). RESULTS: During internal testing, patients with normal perfusion and elevated HARD MACE-DL risk were at higher risk than patients with abnormal perfusion and low HARD MACE-DL risk (annualized event rate, 2.9% vs 1.2%; P < 0.001). Patients in the highest quartile of HARD MACE-DL score had an annual rate of death or MI (4.8%) 10-fold higher than patients in the lowest quartile (0.48% per year). In external testing, the AUC for HARD MACE-DL (0.73; 95% CI: 0.71-0.75) was higher than a logistic regression model (AUC: 0.70), stress total perfusion deficit (TPD) (AUC: 0.65), and ischemic TPD (AUC: 0.63; all P < 0.01). Calibration, a measure of how well predicted risk matches actual risk, was excellent in both groups (Brier score, 0.079 for internal and 0.070 for external). CONCLUSIONS: The DL model predicts death or MI directly from MPI, by estimating patient-level risk with good calibration and improved accuracy compared with traditional quantitative approaches. The model incorporates mechanisms to explain to the physician which image regions contribute to the adverse event prediction.


Subject(s)
Coronary Artery Disease , Deep Learning , Myocardial Infarction , Myocardial Perfusion Imaging , Humans , Myocardial Perfusion Imaging/methods , Predictive Value of Tests , Risk Assessment/methods , Myocardial Infarction/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Prognosis , Coronary Artery Disease/diagnostic imaging
6.
Eur J Nucl Med Mol Imaging ; 50(2): 387-397, 2023 01.
Article in English | MEDLINE | ID: mdl-36194270

ABSTRACT

PURPOSE: Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the disease probability can be overestimated due to selection bias. We evaluated different strategies for training AI models to improve the calibration (accurate estimate of disease probability), using external testing. METHODS: Deep learning was trained using 828 patients from 3 sites, with MPI and invasive angiography within 6 months. Perfusion was assessed using upright (U-TPD) and supine total perfusion deficit (S-TPD). AI training without data augmentation (model 1) was compared to training with augmentation (increased sampling) of patients without obstructive CAD (model 2), and patients without CAD and TPD < 2% (model 3). All models were tested in an external population of patients with invasive angiography within 6 months (n = 332) or low likelihood of CAD (n = 179). RESULTS: Model 3 achieved the best calibration (Brier score 0.104 vs 0.121, p < 0.01). Improvement in calibration was particularly evident in women (Brier score 0.084 vs 0.124, p < 0.01). In external testing (n = 511), the area under the receiver operating characteristic curve (AUC) was higher for model 3 (0.930), compared to U-TPD (AUC 0.897) and S-TPD (AUC 0.900, p < 0.01 for both). CONCLUSION: Training AI models with augmentation of low-risk patients can improve calibration of AI models developed to identify patients with CAD, allowing more accurate assignment of disease probability. This is particularly important in lower-risk populations and in women, where overestimation of disease probability could significantly influence down-stream patient management.


Subject(s)
Coronary Artery Disease , Deep Learning , Myocardial Perfusion Imaging , Humans , Female , Coronary Artery Disease/diagnostic imaging , Artificial Intelligence , Sensitivity and Specificity , Tomography, Emission-Computed, Single-Photon/methods , Perfusion , Myocardial Perfusion Imaging/methods , Coronary Angiography
7.
J Nucl Cardiol ; 29(5): 2393-2403, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35672567

ABSTRACT

BACKGROUND: Accurately predicting which patients will have abnormal perfusion on MPI based on pre-test clinical information may help physicians make test selection decisions. We developed and validated a machine learning (ML) model for predicting abnormal perfusion using pre-test features. METHODS: We included consecutive patients who underwent SPECT MPI, with 20,418 patients from a multi-center (5 sites) international registry in the training population and 9019 patients (from 2 separate sites) in the external testing population. The ML (extreme gradient boosting) model utilized 30 pre-test features to predict the presence of abnormal myocardial perfusion by expert visual interpretation. RESULTS: In external testing, the ML model had higher prediction performance for abnormal perfusion (area under receiver-operating characteristic curve [AUC] 0.762, 95% CI 0.750-0.774) compared to the clinical CAD consortium (AUC 0.689) basic CAD consortium (AUC 0.657), and updated Diamond-Forrester models (AUC 0.658, p < 0.001 for all). Calibration (validation of the continuous risk prediction) was superior for the ML model (Brier score 0.149) compared to the other models (Brier score 0.165 to 0.198, all p < 0.001). CONCLUSION: ML can predict abnormal myocardial perfusion using readily available pre-test information. This model could be used to help guide physician decisions regarding non-invasive test selection.


Subject(s)
Myocardial Perfusion Imaging , Humans , Machine Learning , Myocardial Perfusion Imaging/methods , Perfusion , ROC Curve , Tomography, Emission-Computed, Single-Photon/methods
8.
Circ Cardiovasc Imaging ; 15(6): e012741, 2022 06.
Article in English | MEDLINE | ID: mdl-35727872

ABSTRACT

BACKGROUND: Semiquantitative assessment of stress myocardial perfusion defect has been shown to have greater prognostic value for prediction of major adverse cardiac events (MACE) in women compared with men in single-center studies with conventional single-photon emission computed tomography (SPECT) cameras. We evaluated sex-specific difference in the prognostic value of automated quantification of ischemic total perfusion defect (ITPD) and the interaction between sex and ITPD using high-efficiency SPECT cameras with solid-state detectors in an international multicenter imaging registry (REFINE SPECT [Registry of Fast Myocardial Perfusion Imaging With Next-Generation SPECT]). METHODS: Rest and exercise or pharmacological stress SPECT myocardial perfusion imaging were performed in 17 833 patients from 5 centers. MACE was defined as the first occurrence of death or myocardial infarction. Total perfusion defect (TPD) at rest, stress, and ejection fraction were quantified automatically by software. ITPD was given by stressTPD-restTPD. Cox proportional hazards model was used to evaluate the association between ITPD versus MACE-free survival and expressed as a hazard ratio. RESULTS: In 10614 men and 7219 women, with a median follow-up of 4.75 years (interquartile range, 3.7-6.1), there were 1709 MACE. In a multivariable Cox model, after adjusting for revascularization and other confounding variables, ITPD was associated with MACE (hazard ratio, 1.08 [95% CI, 1.05-1.1]; P<0.001). There was an interaction between ITPD and sex (P<0.001); predicted survival for ITPD<5% was worse among men compared to women, whereas survival among women was worse than men for ITPD≥5%, P<0.001. CONCLUSIONS: In the international, multicenter REFINE SPECT registry, moderate and severe ischemia as quantified by ITPD from high-efficiency SPECT is associated with a worse prognosis in women compared with men.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Myocardial Perfusion Imaging , Female , Humans , Male , Myocardial Perfusion Imaging/methods , Perfusion , Prognosis , Tomography, Emission-Computed, Single-Photon/methods
9.
J Nucl Med ; 63(11): 1768-1774, 2022 11.
Article in English | MEDLINE | ID: mdl-35512997

ABSTRACT

Artificial intelligence may improve accuracy of myocardial perfusion imaging (MPI) but will likely be implemented as an aid to physician interpretation rather than an autonomous tool. Deep learning (DL) has high standalone diagnostic accuracy for obstructive coronary artery disease (CAD), but its influence on physician interpretation is unknown. We assessed whether access to explainable DL predictions improves physician interpretation of MPI. Methods: We selected a representative cohort of patients who underwent MPI with reference invasive coronary angiography. Obstructive CAD, defined as stenosis ≥50% in the left main artery or ≥70% in other coronary segments, was present in half of the patients. We used an explainable DL model (CAD-DL), which was previously developed in a separate population from different sites. Three physicians interpreted studies first with clinical history, stress, and quantitative perfusion, then with all the data plus the DL results. Diagnostic accuracy was assessed using area under the receiver-operating-characteristic curve (AUC). Results: In total, 240 patients with a median age of 65 y (interquartile range 58-73) were included. The diagnostic accuracy of physician interpretation with CAD-DL (AUC 0.779) was significantly higher than that of physician interpretation without CAD-DL (AUC 0.747, P = 0.003) and stress total perfusion deficit (AUC 0.718, P < 0.001). With matched specificity, CAD-DL had higher sensitivity when operating autonomously compared with readers without DL results (P < 0.001), but not compared with readers interpreting with DL results (P = 0.122). All readers had numerically higher accuracy with CAD-DL, with AUC improvement 0.02-0.05, and interpretation with DL resulted in overall net reclassification improvement of 17.2% (95% CI 9.2%-24.4%, P < 0.001). Conclusion: Explainable DL predictions lead to meaningful improvements in physician interpretation; however, the improvement varied across the readers, reflecting the acceptance of this new technology. This technique could be implemented as an aid to physician diagnosis, improving the diagnostic accuracy of MPI.


Subject(s)
Coronary Artery Disease , Deep Learning , Myocardial Perfusion Imaging , Physicians , Humans , Myocardial Perfusion Imaging/methods , Tomography, Emission-Computed, Single-Photon/methods , Artificial Intelligence , Coronary Angiography
10.
Comput Biol Med ; 145: 105449, 2022 06.
Article in English | MEDLINE | ID: mdl-35381453

ABSTRACT

BACKGROUND: Machine learning (ML) models can improve prediction of major adverse cardiovascular events (MACE), but in clinical practice some values may be missing. We evaluated the influence of missing values in ML models for patient-specific prediction of MACE risk. METHODS: We included 20,179 patients from the multicenter REFINE SPECT registry with MACE follow-up data. We evaluated seven methods for handling missing values: 1) removal of variables with missing values (ML-Remove), 2) imputation with median and unique category for continuous and categorical variables, respectively (ML-Traditional), 3) unique category for missing variables (ML-Unique), 4) cluster-based imputation (ML-Cluster), 5) regression-based imputation (ML-Regression), 6) missRanger imputation (ML-MR), and 7) multiple imputation (ML-MICE). We trained ML models with full data and simulated missing values in testing patients. Prediction performance was evaluated using area under the receiver-operating characteristic curve (AUC) and compared with a model without missing values (ML-All), expert visual diagnosis and total perfusion deficit (TPD). RESULTS: During mean follow-up of 4.7 ± 1.5 years, 3,541 patients experienced at least one MACE (3.7% annualized risk). ML-All (reference model-no missing values) had AUC 0.799 for MACE risk prediction. All seven models with missing values had lower AUC (ML-Remove: 0.778, ML-MICE: 0.774, ML-Cluster: 0.771, ML-Traditional: 0.771, ML-Regression: 0.770, ML-MR: 0.766, and ML-Unique: 0.766; p < 0.01 for ML-Remove vs remaining methods). Stress TPD (AUC 0.698) and visual diagnosis (0.681) had the lowest AUCs. CONCLUSION: Missing values reduce the accuracy of ML models when predicting MACE risk. Removing variables with missing values and retraining the model may yield superior patient-level prediction performance.


Subject(s)
Myocardial Perfusion Imaging , Humans , Machine Learning , Myocardial Perfusion Imaging/methods , Registries , Tomography, Emission-Computed, Single-Photon/methods
11.
J Nucl Cardiol ; 29(6): 3221-3232, 2022 12.
Article in English | MEDLINE | ID: mdl-35174442

ABSTRACT

BACKGROUND: The utility of cardiac stress testing depends on the prevalence of myocardial ischemia within candidate populations. However, a comprehensive assessment of the factors influencing frequency of myocardial ischemia within contemporary populations referred for stress testing has not been performed. METHODS: We assessed 19,690 patients undergoing nuclear stress testing from a multicenter registry. The chi-square test was used to assess the relative importance of features for predicting myocardial ischemia. RESULTS: In the overall cohort, LVEF, male gender, and rest total perfusion deficit (TPD) were the top three predictors of ischemia, followed by CAD status, age, typical angina, and CAD risk factors. Myocardial ischemia was observed in 13.6 % of patients with LVEF > 55 %, in 26.2 % of patients with LVEF 45 %-54 %, and in 48.3% among patients with LVEF < 45 % (P < 0.001). A similar pattern was noted for rest TPD (P < 0.001). Men had a threefold higher frequency of ischemia versus women (25.8 % vs. 8.4%, P < 0.001). Although the relative ranking of ischemia predictors varied among centers, LVEF and/or rest TPD were among the two most potent predictors of myocardial ischemia within each center. CONCLUSION: The prevalence of myocardial ischemia varied markedly according to clinical and imaging characteristics. LVEF and rest TPD are robust predictors of myocardial ischemia.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Perfusion Imaging , Humans , Male , Female , Prevalence , Tomography, Emission-Computed, Single-Photon , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/epidemiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Registries , Myocardial Perfusion Imaging/methods
12.
Am Heart J ; 248: 72-83, 2022 06.
Article in English | MEDLINE | ID: mdl-35149037

ABSTRACT

BACKGROUND: The International Study of Comparative Health Effectiveness with Medical and Invasive Approaches trial demonstrated no overall difference in the composite primary endpoint and the secondary endpoints of cardiovascular (CV) death/myocardial infarction or all-cause mortality between an initial invasive or conservative strategy among participants with chronic coronary disease and moderate or severe myocardial ischemia. Detailed cause-specific death analyses have not been reported. METHODS: We compared overall and cause-specific death rates by treatment group using Cox models with adjustment for pre-specified baseline covariates. Cause of death was adjudicated by an independent Clinical Events Committee as CV, non-CV, and undetermined. We evaluated the association of risk factors and treatment strategy with cause of death. RESULTS: Four-year cumulative incidence rates for CV death were similar between invasive and conservative strategies (2.6% vs 3.0%; hazard ratio [HR] 0.98; 95% CI [0.70-1.38]), but non-CV death rates were higher in the invasive strategy (3.3% vs 2.1%; HR 1.45 [1.00-2.09]). Overall, 13% of deaths were attributed to undetermined causes (38/289). Fewer undetermined deaths (0.6% vs 1.3%; HR 0.48 [0.24-0.95]) and more malignancy deaths (2.0% vs 0.8%; HR 2.11 [1.23-3.60]) occurred in the invasive strategy than in the conservative strategy. CONCLUSIONS: In International Study of Comparative Health Effectiveness with Medical and Invasive Approaches, all-cause and CV death rates were similar between treatment strategies. The observation of fewer undetermined deaths and more malignancy deaths in the invasive strategy remains unexplained. These findings should be interpreted with caution in the context of prior studies and the overall trial results.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Humans , Ischemia , Myocardial Infarction/therapy , Myocardial Ischemia/therapy , Risk Factors
13.
J Nucl Cardiol ; 29(2): 727-736, 2022 04.
Article in English | MEDLINE | ID: mdl-32929639

ABSTRACT

BACKGROUND: Obese patients constitute a substantial proportion of patients referred for SPECT myocardial perfusion imaging (MPI), presenting a challenge of increased soft tissue attenuation. We investigated whether automated quantitative perfusion analysis can stratify risk among different obesity categories and whether two-view acquisition adds to prognostic assessment. METHODS: Participants were categorized according to body mass index (BMI). SPECT MPI was assessed visually and quantified automatically; combined total perfusion deficit (TPD) was evaluated. Kaplan-Meier and Cox proportional hazard analyses were used to assess major adverse cardiac event (MACE) risk. Prognostic accuracy for MACE was also compared. RESULTS: Patients were classified according to BMI: BMI < 30, 30 ≤ BMI < 35, BMI ≥ 35. In adjusted analysis, each category of increasing stress TPD was associated with increased MACE risk, except for 1% ≤ TPD < 5% and 5% ≤ TPD < 10% in patients with BMI ≥ 35. Compared to visual analysis, single-position stress TPD had higher prognostic accuracy in patients with BMI < 30 (AUC .652 vs .631, P < .001) and 30 ≤ BMI < 35 (AUC .660 vs .636, P = .027). Combined TPD had better discrimination than visual analysis in patients with BMI ≥ 35 (AUC .662 vs .615, P = .003). CONCLUSIONS: Automated quantitative methods for SPECT MPI interpretation provide robust risk stratification in the obese population. Combined stress TPD provides additional prognostic accuracy in patients with more significant obesity.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Myocardial Perfusion Imaging , Cardiovascular Diseases/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Heart Disease Risk Factors , Humans , Myocardial Perfusion Imaging/methods , Obesity/complications , Obesity/diagnostic imaging , Registries , Risk Factors , Tomography, Emission-Computed, Single-Photon/methods
14.
JACC Cardiovasc Imaging ; 15(6): 1091-1102, 2022 06.
Article in English | MEDLINE | ID: mdl-34274267

ABSTRACT

BACKGROUND: Explainable artificial intelligence (AI) can be integrated within standard clinical software to facilitate the acceptance of the diagnostic findings during clinical interpretation. OBJECTIVES: This study sought to develop and evaluate a novel, general purpose, explainable deep learning model (coronary artery disease-deep learning [CAD-DL]) for the detection of obstructive CAD following single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: A total of 3,578 patients with suspected CAD undergoing SPECT MPI and invasive coronary angiography within a 6-month interval from 9 centers were studied. CAD-DL computes the probability of obstructive CAD from stress myocardial perfusion, wall motion, and wall thickening maps, as well as left ventricular volumes, age, and sex. Myocardial regions contributing to the CAD-DL prediction are highlighted to explain the findings to the physician. A clinical prototype was integrated using a standard clinical workstation. Diagnostic performance by CAD-DL was compared to automated quantitative total perfusion deficit (TPD) and reader diagnosis. RESULTS: In total, 2,247 patients (63%) had obstructive CAD. In 10-fold repeated testing, the area under the receiver-operating characteristic curve (AUC) (95% CI) was higher according to CAD-DL (AUC: 0.83 [95% CI: 0.82-0.85]) than stress TPD (AUC: 0.78 [95% CI: 0.77-0.80]) or reader diagnosis (AUC: 0.71 [95% CI: 0.69-0.72]; P < 0.0001 for both). In external testing, the AUC in 555 patients was higher according to CAD-DL (AUC: 0.80 [95% CI: 0.76-0.84]) than stress TPD (AUC: 0.73 [95% CI: 0.69-0.77]) or reader diagnosis (AUC: 0.65 [95% CI: 0.61-0.69]; P < 0.001 for all). The present model can be integrated within standard clinical software and generates results rapidly (<12 seconds on a standard clinical workstation) and therefore could readily be incorporated into a typical clinical workflow. CONCLUSIONS: The deep-learning model significantly surpasses the diagnostic accuracy of standard quantitative analysis and clinical visual reading for MPI. Explainable artificial intelligence can be integrated within standard clinical software to facilitate acceptance of artificial intelligence diagnosis of CAD following MPI.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Artificial Intelligence , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Myocardial Perfusion Imaging/methods , Predictive Value of Tests , Tomography, Emission-Computed, Single-Photon
15.
J Nucl Cardiol ; 29(5): 2295-2307, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34228341

ABSTRACT

BACKGROUND: Stress-only myocardial perfusion imaging (MPI) markedly reduces radiation dose, scanning time, and cost. We developed an automated clinical algorithm to safely cancel unnecessary rest imaging with high sensitivity for obstructive coronary artery disease (CAD). METHODS AND RESULTS: Patients without known CAD undergoing both MPI and invasive coronary angiography from REFINE SPECT were studied. A machine learning score (MLS) for prediction of obstructive CAD was generated using stress-only MPI and pre-test clinical variables. An MLS threshold with a pre-defined sensitivity of 95% was applied to the automated patient selection algorithm. Obstructive CAD was present in 1309/2079 (63%) patients. MLS had higher area under the receiver operator characteristic curve (AUC) for prediction of CAD than reader diagnosis and TPD (0.84 vs 0.70 vs 0.78, P < .01). An MLS threshold of 0.29 had superior sensitivity than reader diagnosis and TPD for obstructive CAD (95% vs 87% vs 87%, P < .01) and high-risk CAD, defined as stenosis of the left main, proximal left anterior descending, or triple-vessel CAD (sensitivity 96% vs 89% vs 90%, P < .01). CONCLUSIONS: The MLS is highly sensitive for prediction of both obstructive and high-risk CAD from stress-only MPI and can be applied to a stress-first protocol for automatic cancellation of unnecessary rest imaging.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Algorithms , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Machine Learning , Myocardial Perfusion Imaging/methods , Patient Selection , Perfusion , Tomography, Emission-Computed, Single-Photon/methods
16.
Cardiovasc Res ; 118(9): 2152-2164, 2022 07 20.
Article in English | MEDLINE | ID: mdl-34259870

ABSTRACT

AIMS: Optimal risk stratification with machine learning (ML) from myocardial perfusion imaging (MPI) includes both clinical and imaging data. While most imaging variables can be derived automatically, clinical variables require manual collection, which is time-consuming and prone to error. We determined the fewest manually input and imaging variables required to maintain the prognostic accuracy for major adverse cardiac events (MACE) in patients undergoing a single-photon emission computed tomography (SPECT) MPI. METHODS AND RESULTS: This study included 20 414 patients from the multicentre REFINE SPECT registry and 2984 from the University of Calgary for training and external testing of the ML models, respectively. ML models were trained using all variables (ML-All) and all image-derived variables (including age and sex, ML-Image). Next, ML models were sequentially trained by incrementally adding manually input and imaging variables to baseline ML models based on their importance ranking. The fewest variables were determined as the ML models (ML-Reduced, ML-Minimum, and ML-Image-Reduced) that achieved comparable prognostic performance to ML-All and ML-Image. Prognostic accuracy of the ML models was compared with visual diagnosis, stress total perfusion deficit (TPD), and traditional multivariable models using area under the receiver-operating characteristic curve (AUC). ML-Minimum (AUC 0.798) obtained comparable prognostic accuracy to ML-All (AUC 0.799, P = 0.19) by including 12 of 40 manually input variables and 11 of 58 imaging variables. ML-Reduced achieved comparable accuracy (AUC 0.796) with a reduced set of manually input variables and all imaging variables. In external validation, the ML models also obtained comparable or higher prognostic accuracy than traditional multivariable models. CONCLUSION: Reduced ML models, including a minimum set of manually collected or imaging variables, achieved slightly lower accuracy compared to a full ML model but outperformed standard interpretation methods and risk models. ML models with fewer collected variables may be more practical for clinical implementation.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Myocardial Perfusion Imaging , Humans , Machine Learning , Myocardial Perfusion Imaging/methods , Prognosis , Registries , Tomography, Emission-Computed, Single-Photon
17.
J Nucl Cardiol ; 29(6): 3003-3014, 2022 12.
Article in English | MEDLINE | ID: mdl-34757571

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is increasingly prevalent among contemporary populations referred for cardiac stress testing, but its potency as a predictor for major adverse cardiovascular events (MACE) vs other clinical variables is not well delineated. METHODS AND RESULTS: From 19,658 patients who underwent SPECT-MPI, we identified 3122 patients with DM without known coronary artery disease (CAD) (DM+/CAD-) and 3564 without DM with known CAD (DM-/CAD+). Propensity score matching was used to control for the differences in characteristics between DM+/CAD- and DM-/CAD+ groups. There was comparable MACE in the matched DM+/CAD- and DM-/CAD+ groups (HR 1.15, 95% CI 0.97-1.37). By Chi-square analysis, type of stress (exercise or pharmacologic), total perfusion deficit (TPD), and left ventricular function were the most potent predictors of MACE, followed by CAD and DM status. The combined consideration of mode of stress, TPD, and DM provided synergistic stratification, an 8.87-fold (HR 8.87, 95% CI 7.27-10.82) increase in MACE among pharmacologically stressed patients with DM and TPD > 10% (vs non-ischemic, exercised stressed patients without DM). CONCLUSIONS: Propensity-matched patients with DM and no known CAD have similar MACE risk compared to patients with known CAD and no DM. DM is synergistic with mode of stress testing and TPD in predicting the risk of cardiac stress test patients.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Myocardial Perfusion Imaging , Humans , Coronary Artery Disease/diagnostic imaging , Prognosis , Diabetes Mellitus/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Registries , Myocardial Perfusion Imaging/methods , Risk Factors
18.
Circ Cardiovasc Imaging ; 14(7): e012386, 2021 07.
Article in English | MEDLINE | ID: mdl-34281372

ABSTRACT

BACKGROUND: Phase analysis of single-photon emission computed tomography myocardial perfusion imaging provides dyssynchrony information which correlates well with assessments by echocardiography, but the independent prognostic significance is not well defined. This study assessed the independent prognostic value of single-photon emission computed tomography-myocardial perfusion imaging phase analysis in the largest multinational registry to date across all modalities. METHODS: From the REFINE SPECT (Registry of Fast Myocardial Perfusion Imaging With Next Generation SPECT), a total of 19 210 patients were included (mean age 63.8±12.0 years and 56% males). Poststress total perfusion deficit, left ventricular ejection fraction, and phase variables (phase entropy, bandwidth, and SD) were obtained automatically. Cox proportional hazards analyses were performed to assess associations with major adverse cardiac events (MACE). RESULTS: During a follow-up of 4.5±1.7 years, 2673 (13.9%) patients experienced MACE. Annualized MACE rates increased with phase variables and were ≈4-fold higher between the second and highest decile group for entropy (1.7% versus 6.7%). Optimal phase variable cutoff values stratified MACE risk in patients with normal and abnormal total perfusion deficit and left ventricular ejection fraction. Only entropy was independently associated with MACE. The addition of phase entropy significantly improved the discriminatory power for MACE prediction when added to the model with total perfusion deficit and left ventricular ejection fraction (P<0.0001). CONCLUSIONS: In a largest to date imaging study, widely representative, international cohort, phase variables were independently associated with MACE and improved risk stratification for MACE beyond the prediction by perfusion and left ventricular ejection fraction assessment alone. Phase analysis can be obtained fully automatically, without additional radiation exposure or cost to improve MACE risk prediction and, therefore, should be routinely reported for single-photon emission computed tomography-myocardial perfusion imaging studies.


Subject(s)
Coronary Circulation , Myocardial Ischemia/diagnostic imaging , Myocardial Perfusion Imaging , Tomography, Emission-Computed, Single-Photon , Aged , Canada , Disease Progression , Female , Humans , Incidence , Israel , Male , Middle Aged , Myocardial Ischemia/mortality , Myocardial Ischemia/physiopathology , Myocardial Ischemia/therapy , Predictive Value of Tests , Prognosis , Registries , Risk Assessment , Risk Factors , Stroke Volume , United States , Ventricular Function, Left
19.
J Nucl Med ; 62(11): 1582-1590, 2021 11.
Article in English | MEDLINE | ID: mdl-33712535

ABSTRACT

Shape index and eccentricity index are measures of left ventricular morphology. Although both measures can be quantified with any stress imaging modality, they are not routinely evaluated during clinical interpretation. We assessed their independent associations with major adverse cardiovascular events (MACE), including measures of poststress change in shape index and eccentricity index. Methods: Patients undergoing SPECT myocardial perfusion imaging between 2009 and 2014 from the Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) were studied. Shape index (ratio between the maximum left ventricular diameter in short axis and ventricular length) and eccentricity index (calculated from orthogonal diameters in short axis and length) were calculated in end-diastole at stress and rest. Multivariable analysis was performed to assess independent associations with MACE (death, nonfatal myocardial infarction, unstable angina, or late revascularization). Results: In total, 14,016 patients with a mean age of 64.3 ± 12.2 y (8,469 [60.4%] male were included. MACE occurred in 2,120 patients during a median follow-up of 4.3 y (interquartile range, 3.4-5.7). Rest, stress, and poststress change in shape and eccentricity indices were associated with MACE in unadjusted analyses (all P < 0.001). However, in multivariable models, only poststress change in shape index (adjusted hazard ratio, 1.38; P < 0.001) and eccentricity index (adjusted hazard ratio, 0.80; P = 0.033) remained associated with MACE. Conclusion: Two novel measures, poststress change in shape index and eccentricity index, were independently associated with MACE and improved risk estimation. Changes in ventricular morphology have important prognostic utility and should be included in patient risk estimation after SPECT myocardial perfusion imaging.


Subject(s)
Myocardial Perfusion Imaging , Tomography, Emission-Computed, Single-Photon , Aged , Coronary Circulation , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...